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Abstract—Stochastic gradient descent (SGD) is a commonly
used technique in large-scale machine learning tasks, but its
convergence is slow due to the inherent variance. In recent
years, a popular method, Stochastic Variance Reduced Gradient
(SVRG) , addresses this shortcoming via computing the full
gradient of the entire dataset in each epoch. However, conven-
tional SVRG and its variants usually need to identify a hyper-
parameter - the epoch size, which is essential to the convergence
performance. Few previous studies discuss how to systematically
find a suitable value for that hyper-parameter, which makes
it hard to gain a good convergence performance in practical
machine learning applications. In this paper, we propose a new
stochastic gradient descent named AESVRG, which introduces
variance reduction and computes the full gradient adaptively.
Its enhanced implementation, AESVRG+, has a convergence
performance that can outplay existing SVRG with fine-tuned
epoch sizes. An extensive evaluation illustrates the significant
performance improvement of our method.

I. INTRODUCTION

Recent years have seen the rapid development of network

and various sensors [1], thus machine learning methods be-

come popular as they are suitable for handling data with huge

size. Many machine learning models like neural networks

[2], logistic regression, [3] support vector machine [4] and

matrix factorization [5] involves the following optimization

procedure:

minF (ω), F (ω) =
1

n

n∑

i=1

fi(ω) +R(ω) (1)

where n is the size of the training data. F (ω) is the loss func-

tion, which calculates the training loss of a machine learning

model, and ω is a parameter for the loss function. R(ω) is

the regularizer, which is widely used to avoid overfitting. It is

worth noting that the total number of instances in the training

dataset, i.e. n can be very large in the ‘big data’ era.
Gradient Descent (GD) [6] is a canonical method to solve

the above-mentioned optimization problem. The gradient of

F (ω), denoted by ∇F (ω), can be obtained from the whole

training set, which is extremely time-consuming if n is very

large. Besides, GD is an iterative-convergent algorithm, that

is, it usually takes thousands of iterations for the parameter ω
to be converged. Since GD needs to compute the gradient of

F (ω) in each iteration, when the volume of data is large, the

computation cost increases sharply and impairs the convergent

performance significantly.
Stochastic Gradient Descent (SGD) [7] addresses this issue

by replacing the calculation of ∇F (ω) with a stochastic

gradient denoted by ∇fi(ω) with i ∈ {1, 2, ..., n}. In SGD, i
is randomly selected from the entire training set. Thus, SGD

significantly outperforms GD in terms of time efficiency . Take

the expectation of i, we obtain E[∇fi(ω)] = ∇F (ω). The

difference between ∇fi(ω) and ∇F (ω) represents variance,

which makes it difficult to achieve the optimum. In order to

make the loss function F (ω) converge, a decaying learning

rate is usually used to reduce the variance. However, the

learning rate becomes too small after hundreds of iterations,

which can prevent the loss function from converging. In

conclusion, SGD with a dacaying learning rate incurs a sub-

linear convergence rate.

In recent years, variance-reduced variants of SGD such as

SVRG [8] were proposed to reduce the variance of stochastic

gradient. Those methods can obtain a linear convergence

performance with a constant learning rate. In SVRG, a full

gradient is only occasionally computed during the inexpensive

SGD steps, and thus splits the optimization workload into

different epochs. This strategy effectively reduce the variance

of stochastic gradients. On the basis of SVRG, many vari-

ants have been proposed to further improve its performance.

SVRG-BB [9] uses the Barzilai and Borwein (BB) method to

compute the step size before each epoch [10]. CHEAPSVRG

[11] aims at reducing the expensive computational cost of a

full gradient through using a surrogate represented by a subset

of the training data. mS2GD [12] introduces mini-batching

into the computation of stochastic steps, which exhibits a

clear advantage for parallel computation. EMGD [13], SVR-

GHT [14], Prox-SVRG [15] and SVRG with second-order

information [16] modify the update rule of stochastic steps,

and show advantages to SVRG in some cases. However, most

recent studies argued that the epoch size m should be constant

[8, 9, 11] or increased monotonically [12], regardless of the

learning rate. It is recommended that m = 2n for convex

problems and m = 5n for non-convex problems in SVRG,

without theoretical analysis and further experimental verifica-

tion. Extensive empirical studies illustrate that a good choice

of those hyper-parameters is essential for time efficiency in

real-world machine learning applications.

Generally, the epoch size m has a great impact on the

convergence performance of SVRG. Specifically, if m is too

small, it wastes too much time for frequent computation of

the full gradient. If m is too large, the variance between

the stochastic gradient and the full gradient increases sharply,

making the convergence of training loss extremely difficult.

According to the analysis of variance [17], the learning rate

η can also have a significant impact on the convergence

performance. However, those previous studies do not provide
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Algorithm 1 SVRG

Require: the learning rate η, the epoch size m, and an initial

point ω̃0.

1: for s = 0, 1, 2, ... do
2: μ̃ = 1

n

n∑
i=1

∇fi(ω̃s)

3: ω0 = ω̃s

4: for t = 1, 2, ...,m do
5: Randomly pick it ∈ {1, 2, ..., n}
6: ωt = ωt−1 − η(∇fit(ωt−1)−∇fit(ω̃s) + μ̃)
7: end for
8: Option I: ω̃s+1 = ωm

9: Option II: ω̃s+1 = ωt for randomly chosen t ∈
{0, ...,m− 1}

10: end for

a practical method to determine the value of those hyper-

parameters.

Since SVRG applies SGD with a variance reducer to op-

timize the object function, the training loss decreases rapidly

at the beginning of each epoch but tends to fluctuate after

excessive iterations. Intuitively, if we can detect the fluctuation

and break the current epoch as soon as it happens, we should

be able to achieve a better performance than the original

SVRG. Thus the key idea is to find an effective strategy to

detect the fluctuation in real time. In this paper, we develop

a novel algorithm, AESVRG, which can adjust adaptively the

epoch size. AESVRG applies a new stop condition regarding

the variance and the changing rate of parameters. Besides,

the stop condition terminates the iterations in an epoch by

considering the value of learning rate. Additionally, we give

guidance of how to set the parameters in practical machine

learning tasks. Since AESVRG may stop iterations earlier than

expectation when η is quite small, we propose an improved

algorithm denoted by AESVRG+. In brief, our contributions

are highlighted as follows:

• A novel algorithm denoted by AESVRG is proposed,

which can adjust the epoch size to a suitable value

dynamically.

• An improvement of AESVRG denoted by AESVRG+ is

presented, which is insensitive to the selection of hyper-

parameters.

• Extensive empirical studies shows the effectiveness of our

proposed algorithms, which outperform their counterparts

significantly on the convergence performance.

This paper is organized as follows: Section II reviews

the related work. Section III describes the SVRG algorithm.

Section IV presents our version of SVRG, AESVRG, and its

improved method, i.e. AESVRG+. Section V demonstrates the

numerical results of our algorithms. Section VI discusses the

strengths and weaknesses of our work. Section VII concludes

this paper.

II. RELATED WORK

Several variants of SVRG discussing the strategy of adjust-

ing epoch size were proposed, including SVRG++ [18], S2GD

[19], SVRG Auto Epoch [18] and so on.

SVRG++ is designed for non-strongly-convex and sum-of-

non-convex objectives specifically. It adopts a simple strategy

that the epoch size m doubles between every two consecutive

epochs. This method is absolutely heuristic and sometimes not

justified. Although [18] analyzed the convergence of SVRG++

in theory and has conducted experiments to confirm their

theoretical findings, our experiments show that when η is large

or moderate, the exponential growth of m will incur a greater

variance and impair convergence.

S2GD designs a probability model of m and shows that a

large epoch size should be used with a high probability. The

motivation of designing this probability model is not indicated

and it seems arbitrary. A notable drawback of S2GD is that

it needs to know the lower bound of the value of strong

convexity of F (w) in Equation 1, which is hard to estimate in
practice. Meanwhile, the maximum number of stochastic steps

per epoch is also a sensitive parameter. Although it performs

well with best-tuned parameters, it is not practical in reality.

SVRG Auto Epoch is introduced as an further improve-

ment of SVRG++. It determines the termination of epoch

through the quality of the snapshot full gradient. It records

difft = ‖∇fi(ω
s
t )−∇fi(ω̃

s−1)‖ every iteration t and uses

it as a tight upper bound on the variance of the gradient

estimator. It keeps track of the average difft in the last n/4
iterations and compare this quantity with the average difft
of the previous epoch. If the former is greater than half of

the latter, SVRG++ will terminate the current epoch and step

into a new one. Although this method is reasonable, it has too

much parameters to tune. Moreover, it introduces a lot of extra

computation for each iteration, which impairs the performance

significantly.

Comparing with the above methods, AESVRG is intuitively

more reasonable and explainable. It can adaptively adjust the

epoch size without tuning extra hyper-parameters. Moreover,

it requires little additional computation cost.

III. PRELIMINARIES

In this section we review the SVRG algorithm proposed by

Johnson and Zhang[8]. As is shown in Algorithm 1, there are

two loops in SVRG. Each outer loop is called an epoch while

each inner loop is called an iteration. In each outer loop, a

full gradient μ̃ is computed at first, and its calculation requires

to scan the entire dataset. In each inner loop, every iteration

needs to pick it ∈ {1, 2, ..., n} randomly. The update rule of

the parameters is illustrated in Equation 2:

ωt = ωt−1 − η(∇fit(ωt−1)−∇fit(ω̃s) + μ̃). (2)

Note that the expectation of ∇fit(ω̃s) over it is μ̃, and the

expectation of ∇fit(ωt−1) over it is ∇F (ωt−1). We thus

obtain

E[ωt|ωt−1] = ωt−1 − η∇F (ωt−1) (3)

2936



Algorithm 2 AESVRG

Require: the learning rate η, the window size m0, and an

initial point ω̃
1: for s = 0, 1, ... do
2: μ̃ = 1

n

n∑
i=1

∇fi(ω̃s)

3: ω0 = ω̃s

4: for t = 1, 2, .. do
5: if t%m0 = 0 and t >= 2m0 and ‖ωt−ωt−m0

‖ >
‖ωt−m0

− ωt−2m0
‖ then

6: break

7: end if
8: Randomly pick it ∈ {1, 2, ..., n}
9: ωt = ωt−1 − η(∇fit(ωt−1)−∇fit(ω̃s) + μ̃)

10: end for
11: ω̃s+1 = ωt

12: end for
13: return ω̃s+1

It can be seen that the variance of the update rule, i.e. Equation

2 is reduced. When both ω̃ and ωt converge to the optimum

ω∗, then μ̃ → 0 and ∇fit(ωt−1) → ∇fit(ω̃s), therefore

∇fit(ωt−1)−∇fit(ω̃s) + μ̃ → 0

Hence, the learning rate for SVRG is allowed to be set as a

relatively large constant against SGD, which results in a high

convergence rate. At the end of each epoch, ω̃s+1 is updated

by the output of the inner loop. Note that there are two options

for the update. Although only the convergence of SVRG with

Option I is analyzed in [8], SVRG with Option II has been

confirmed numerically to perform better. We adopt Option II

in this paper. It is obvious that when m is too large, SGD with

a variance reducer will degenerate to the basic SGD, which

results in a huge variance. Thus our work focuses on how to

set an appropriate epoch size.

IV. SVRG WITH ADAPTIVE EPOCH SIZE

In this section we describe two novel algorithms: AESVRG

and AESVRG+, which can set the epoch size adaptively and

their convergence performance outplay previous studies. We

assume the loss function F (ω) and the component functions

fi(ω) in Equation 1 are convex and smooth throughout the

paper.

A. AESVRG

1) Idea: Generally, the optimal m is strongly related to

η. Our experimental results also report that when η is large,

the training loss begins to fluctuate after merely a small

number of iterations. On the other hand, SVRG can endure

far more than n iterations with a small η. In specific, if we

stop the iterations in one epoch just before the training loss

begins to fluctuate, the new algorithm will certainly be very

efficient and outperform SVRG with a constant epoch size.

A straightforward approach is to evaluate the training loss

occasionally. However, the training loss computation requires

to pass over the entire training set, which is rather time

consuming.

When we apply gradient descent to the convex problem,

as the ωt gradually approaches to the optimal value ω∗, the

gradient ∇F (ωt) keeps decreasing. We know that

ωt − ωt−1 = −η∇F (ωt−1)

Then we have ‖ωt+1−ωt‖ < ‖ωt−ωt−1‖. Consider the update

rule of SVRG, and take the expectation of it, we can obtain

E[ωt − ωt−1] = E[−η(∇fit(ωt−1)−∇fit(ω̃s) + μ̃)]

= −ηE[∇fit(ωt−1)−∇fit(ω̃s) + μ̃]

= −η∇F (ωt−1)

(4)

Intuitively, if ωt keeps approaching to the optimal value ω∗,
the ∇F (ωt) decays generally, with slight fluctuation caused by

variance. Therefore, if we consider a window, we can believe

that ‖ωt+m0 − ωt‖ < ‖ωt − ωt−m0‖ holds during the train

of parameters. On the other hand, when ωt oscillates near the

optimal value due to the variance, ‖ωt+m0
− ωt‖ will keep

fluctuating.
Inspired by this observation, AESVRG sets

‖ωt+m0
− ωt‖ > ‖ωt − ωt−m0

‖ (5)

as a stop condition in each epoch. If Inequality 5 holds, we

deem that the training loss fails to converge and begins to

fluctuate, we have to suspend the iterations in such epoch and

compute a full gradient in order to reduce the variance.

2) Details: As illustrated in Algorithm 2, AESVRG re-

quires only two parameters: the learning rate η and the window

size m0. It differs from SVRG only in the inner loop. At line

5, the first condition, i.e. t%m0 = 0 means that we check

Inequality 5 every m0 iterations. The second condition, i.e.

t >= 2m0 is trivial as we need at least two windows to check

the stop conditions. If the condition holds, we break the inner

loop, and step out of the current epoch, and into the next

epoch. Note that the epoch size is definitely a multiple of m0.

Hence we should set m0 to be smaller than 0.5n for flexibility.

At the same time, m0 cannot be too small because the stop

condition may usually hold, which is caused by the random

pick of the instances. We recommend to set m0 between 0.1n
and 0.2n according to our empirical experiments.

3) Advantages:
• AESVRG is superior to SVRG with prefixed epoch size

as it can adapt the epoch size to an appropriate value

dynamically. For a large η, AESVRG will adjust the

epoch size to be relatively small to constrain variance.

On the other hand, when η is small, each epoch can thus

contain more iterations. AESVRG will make the epoch

size larger than 2n to avoid frequent computation of the

full gradient.

• Compared with the variants of SVRG such as

SVRG Auto Epoch and S2GD, AESVRG requires far

less additional computation cost. The reason is that it just

needs to compute a simple inequality every m0 iterations,

which is very efficient.
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Algorithm 3 AESVRG+

Require: learning rate η, window size m0, initial point ω̃
1: for s = 0, 1, ... do
2: μ̃ = 1

n

n∑
i=1

∇fi(ω̃s)

3: ω0 = ω̃s

4: for t = 1, 2, .. do
5: if t > m0 and t%m0 = 0 and ‖ωt − ωt−m0‖ >

‖ωt−m0
− ωt−2m0

‖ then
6: break

7: end if
8: Randomly pick it ∈ {1, 2, ..., n}
9: ωt = ωt−1 − η(∇fit(ωt−1)−∇fit(ω̃s) + μ̃)

10: end for
11: υ = t
12: m0 = (�υ/n�+ 1)× (0.1n)
13: ω̃s+1 = ωt

14: end for
15: return ω̃s+1

B. Optimal Choice of the window size
In AESVRG, we use ‖ωt − ωt−m0

‖ to detect when the

training loss begins to fluctuate and fails to converge. However,

how to choose a suitable value of the window size m0 becomes

an important issue. In this section, we analyze the convergence

performance by varying settings of m0, and provide guidance

on setting an optimal value.
Since the variance incurred by SGD iterations cannot be

ignored, when we set m0 to be small, the variance of ‖ωt −
ωt−m0‖ is too large, and the reliability of the stop condition

of AESVRG which is denoted by C(m0), is relatively low. As

a result, Inequality 5 may often holds due to variance, even

though the loss function is still decreased during iterations.

Therefore, the full gradient will be computed frequently, which

thus wastes a lot of time. It is obvious that C(m0) is a

monotonically increasing function of m0.
If we set m0 to be relatively large, it will be too late to detect

the oscillation of training loss. Therefore, it also wastes a lot

of time, and fails to optimize the objective function. We use

Ds(m0) to denote the Absolute Delay of detecting fluctuation.

Furthermore, the Absolute Delay makes different effects on the

convergence performance, depending on the epoch size. Thus,

it is better to consider the Relative Delay:

Dr(m0) =
Ds(m0)

υ + n
. (6)

Note that υ denote the number of iterations in a specific

epoch and n denotes the size of the training dataset. Function

Dr(m0) is also monotonically increasing with respect to m0.
It is necessary to choose a suitable m0 which should ensure

that C(m0) is large enough and Dr(m0) is small enough.

In order to obtain a trade-off between C(m0) and Dr(m0),
we convert the parameter-choosing problem to the following

maximization problem:

m0 = max
m0

{C(m0)−Dr(m0)}

= max
m0

{C(m0)− Ds(m0)

υ + n
}

(7)

s.t.

0 < m0 < n (8)

From equation (7) we can obtain the following conclusions:

1) When the epoch size υ is small, the Ds tends to be

more important than C. Hence we should set m0 to

be relatively small in order to maximize the objective

function. On the contrary, it is recommended to set

m0 to be large. In spirit of this, we can set m0 to be

proportional to the iteration number of previous epoch.

2) According to our experiments on SVRG, when the

learning rate η is large, the loss function begins to

fluctuate after merely n/10 iterations, so we should set

the initial m0 to the same order of magnitude as 0.1n.

C. AESVRG+

1) Idea: Our experiments on AESVRG show that it per-

forms well for a large or moderate η. However, when η is
rather small, the best epoch size for SVRG will be larger

than 10n. And AESVRG may finish the epoch prematurely

while the training loss keeps declining. It is because inequality

(5) may holds due to variance, rather than the fluctuation of

training loss. According to the analysis in IV-B, variance of

‖ωt+m0
− ωt‖ has more impact on the performance of our

algorithm when the best epoch size is large. Intuitively, we

should adjust the window size m0 of the next epoch according

to the current epoch size, instead of a constant value.

2) Details: As illustrated in Algorithm 3, we recompute

m0 after the inner loop in each epoch. m0 is set to be

(�υ/n�+1)×(0.1n), where υ denotes the iteration number of

current epoch. It means that m0 is incremented by 0.1n when

υ exceeds n, 2n, 3n and so on. In other words, for each epoch,

we have an expected epoch size equal to (10m0 − n), if the

real epoch size is smaller than the expected one, AESVRG+

will decrease the value of m0 according to the size of current

epoch. Otherwise it will assign a larger value to m0.

3) Advantages:
• AESVRG+ outperforms AESVRG as it will enlarge the

window size to reduce variance when necessary, avoiding

to stop an epoch early. It shows good performance regard-

less the learning rate and datasets in our experiments.

• AESVRG+ is not sensitive to the initialized m0, as it

tunes m0 to an appropriate size adaptively. By contrast,

the performance of AESVRG fairly depends on the

choice of m0.

V. NUMERICAL EXPERIMENTS

A. Experimental settings

In this section, we conduct extensive experiments to demon-

strate the advantages of our proposed algorithms. We evaluate

our algorithms on eight different training datasets respectively,

which are publicly available from the LIBSVM website1. The

1 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Fig. 1. Comparison of AESVRG, AESVRG+, SVRG++, S2GD on four datasets, with η = 0.1.

TABLE I
DETAILS OF DATASETS AND MODELS

Dataset Size Dimension Model λ
ijcnn1 49990 22 logistic 10−4

a9a 32561 123 logistic 10−4

w8a 49749 300 logistic 10−4

mushrooms 8124 112 logistic 10−4

YearPredictionMSD 463715 90 ridge 10−4

cadata 20640 8 ridge 10−4

abalone 4177 8 ridge 10−4

mg 1385 6 ridge 10−4

details of those datasets are illustrated in Table I. Note that

the five columns denote the name of the dataset, the size of

the dataset, the dimension of features, the model applied, the

coefficient of the regularization method, respectively. Besides,

logistic denotes logistic regression and ridge denotes ridge

regression.

The l2-regularized logistic regression task is conducted

on datasets: ijcnn1, a9a, w8a and mushrooms. The label of

each instance in these datasets is set to be 1 or -1. Thus,

the loss function of l2-regularized logistic regression task is

formulated:

min
ω

1

n

n∑

i=1

log(1 + e−yiω
Txi) + λ ‖ ω ‖2 . (9)

Here, xi is the instances in the training dataset, and yi is the

label of xi. λ is the coefficient of regularizer. Additionally, the

l2-regularized ridge regression task is conducted on datasets:

YearPredictMSD, cadata, mg and abalone. The loss function

of l2-regularized ridge regression task is formulated:

min
ω

1

n

n∑

i=1

(
ωTxi − yi

)2
+ λ ‖ ω ‖2 . (10)

We scale the value of all features to [−1, 1] and set λ to

be 10−4 for all evaluations. In all figures, the x-axis means

that the number of gradient calculations divided by the size

of training data, i.e. grad/n. This is a metric for measuring

gradient complexity in previous work, which is similar to

the time cost during train of parameters. The y-axis denotes

training loss residual, i.e. F (ω̃s) − F (ω∗). Note that the

optimum F (ω∗) is estimated by running the gradient descent

for a long time. Our numerical experiments include three

parts: comparison of convergence performance with previous

methods, comparison of convergence performance with SVRG

by varying the learning rate and sensitivity tests regarding to

m0. The experimental results report the superior performance

of our methods.

B. Comparison of convergence performance with previous
methods

In this section, we compare our AESVRG and AESVRG+

with two aforementioned methods: SVRG++ and S2GD. We

do not compare with SVRG Auto Epoch because we find that

its termination condition of epoch is never satisfied and thus

SVRG Auto Epoch keeps doing SGD iteration, resulting in

no convergence. For SVRG++, we initialize m = n. For

S2GD, we set the upper bound of m to be 4n. For both

AESVRG and AESVRG+, we set the window size m0 to

be 0.1n. The learning rate η, is fixed as 0.1 throughout this

part of experiments. We evaluate these methods by running

logistic regression on the dataset ijcnn1. As illustrated in

Figure 1, we can see that SVRG++ always fluctuates violently

and fails to converge due the large variance caused by too

large epoch size. It is shown that AESVRG and AESVRG+

always outperform SVRG++ and S2GD and converge rapidly.

Besides, the performance of AESVRG+ is superior to that of

AESVRG. The main reason is that AESVRG+ can adjust the

windows size to a suitable value adaptively.

C. Comparison of convergence performance with SVRG by
varying learning rate

To demonstrate that our algorithm is capable of adjusting

epoch size adaptively regarding to the learning rate, we

compare our algorithm with SVRG for different η. Since

AESVRG+ performs better than AESVRG, only AESVRG+

is used to conduct the comparison with SVRG. For SVRG, we

increase the epoch size m as four different values: n, 2n, 4n,

10n. Those values are used to conduct performance evaluation

in SVRG [8]. Besides, the performance with an epoch size

larger than 10n is similar to the performance with an extremely

large epoch size. It is because that the full gradient is rarely

computed due to such extremely epoch size. The dashed lines

represent SVRG with a fixed epoch size; while the green solid

lines stands for AESVRG+.

As illustrated in Figures 2, 3, 4, 5, AESVRG+ can always

have the similar performance as SVRG with best-tuned epoch

size. We observe that when η is large, and m is set to be
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Fig. 2. Generally, AESVRG can automatically set an appropriate m with different learning rates for the l2-regularized logistic regression on the dataset
ijcnn1
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Fig. 3. Generally, AESVRG can automatically set an appropriate m with different learning rates for the l2-regularized logistic regression on the dataset a9a
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Fig. 4. Generally, AESVRG can automatically set an appropriate m with different learning rates for the l2-regularized ridge regression on the dataset
YearPredictionMSD

a small value, e.g. n, can achieve the best performance. The

main reason is that when η is large, the variance becomes

significant, so m must be set to be small in order to bound

the variance. As η decays, the optimal value of m increases,

which means that the algorithm can tolerate more variance

induced by extra iterations. As illustrated in Figures 2(a), 3(a),

4(a), 5(a), our method is significantly better than SVRG with

best-tuned epoch sizes when learning rate is large or medium.

However, As illustrated in Figures 2(d), 3(d), 4(d), 5(d), if η
is set to be too small, AESVRG+ performs slightly inferior

to SVRG with large epoch sizes, but outperforms SVRG with

recommended epoch sizes, i.e. n and 2n. It is worth noting

that setting η to be too small is not a practical approach when

using SVRG or its variants, because the convergence rate will

be extremely low. Therefore, the sub-optimal performance of

AESVRG+ with a rather small η is acceptable.

D. Sensitivity test by varying m0

In this section, we conduct sensitivity tests on both

AESVRG and AESVRG+ regarding the window size m0.

As analyzed in IV-B, we vary the initial m0 ranges from

0.1 to 0.25 in order to test the sensitivity of AESVRG and

AESVRG+. We conduct the experiments by using logistic

regression and ridge regression on two datasets: a9a and

abalone, respectively. As illustrated in Figures 6(a) and 6(c),

the performance of AESVRG obviously varies with the m0.

And we can see in Figures 6(b) and 6(d), the performance

of AESVRG+ is not sensitive to the choice of m0. The main

reason is that AESVRG uses the prefixed m0 all the time,

while AESVRG+ will adjust the m0 adaptively regardless

of the initialization. If the initial value is too large, the stop

condition holds just after a few windows of iterations, leading

to a smaller epoch size than expected. Thus AESVRG+ will

decrease m0 to a suitable value gradually. On the contrary,

AESVRG+ will increase m0 according to the size of current

epoch. Hence AESVRG+ is more practical than AESVRG in

reality.
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Fig. 5. Generally, AESVRG can automatically set an appropriate m with different learning rates for the l2-regularized ridge regression on the dataset cadata

(a) AESVRG on a9a (b) AESVRG+ on a9a (c) AESVRG on abalone (d) AESVRG+ on abalone

Fig. 6. Sensitivity test on m0 for AESVRG and AESVRG+. The four numbers on the legends means four different choices of m0. The η of a9a and abalone
are 0.2 and 0.1, respectively.

VI. DISCUSSION

Optimization problems are complex as there are numerous

application scenarios, algorithms and datasets. It is impossible

for SVRG to always achieve an excellent performance with

the same epoch size. Besides, the selection for an optimal

epoch size is time-consuming and not feasible for a massive

dataset. Several existing methods provide some strategies for

the choice of the epoch size, but they are not well adapted

to the various real problems. Hence our proposed algorithms

which can adjust epoch size adaptively are great improvements

of SVRG. Despite the fact that we have to tune the window

size m0, this hyper-parameter is not performance sensitive.

First, Comparing with existing methods, our algorithms have

limited the range of our hyper-parameter to a small value.

Second, it can be adapted to the learning rate automatically,

which is more practical than the counterparts. Although we

have not rigorously conducted a convergence analysis of

AESVRG and AESVRG+, both of them prove to be efficient

experimentally and have a significant improvement on the

original SVRG experimentally. Thus the novel stop condition

is a practical strategy for detecting the fluctuation of training

loss. We leave it as an open question to prove the rationality

theoretically.

VII. CONCLUSION

In this paper we propose a novel stop condition for each

epoch in SVRG, leading to a new variant of SVRG: AESVRG,

which can adjust the epoch size adaptively. We analyze how to

choose the optimal value of parameters, and thus develops an

improved method called AESVRG+. We conduct numerical

experiments on real datasets to demonstrate the advantage

of convergence performance of AESVRG and AESVRG+.

Experiments show that both AESVRG and AESVRG+ are

superior to existing methods. Moreover, the AESVRG+ is

comparable to and sometimes even better than SVRG with

best-tuned epoch sizes, but does not need to tune its epoch

size.
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